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ORIGINAL ARTICLE

Machine learning based LOS/NLOS classifier 
and robust estimator for GNSS shadow 
matching
Haosheng Xu1, Antonio Angrisano2, Salvatore Gaglione3 and Li‑Ta Hsu1* 

Abstract 

Global Navigation Satellites Systems (GNSS) is frequently used for positioning services in various applications, e.g., 
pedestrian and vehicular navigation. However, it is well‑known that GNSS positioning performs unreliably in urban 
environments. GNSS shadow matching is a method of improving accuracy in the cross‑street direction. Initial posi‑
tion and classification of observed satellite visibility between line‑of‑sight (LOS) and non‑line‑of‑sight (NLOS) are 
essential for its performance. For the conventional LOS/NLOS classification, the classifiers are based on a single feature, 
extracted from raw GNSS measurements, such as signal noise ratio, pseudorange, elevation angle, etc. Especially in 
urban canyons, these measurements are unstable and unreliable due to the signal reflection and refraction from the 
surrounding buildings. Besides, the conventional least square approach for positioning is insufficient to provide accu‑
rate initialization for shadow matching in urban areas. In our study, shadow matching is improved using the initial 
position from robust estimator and the satellite visibility determined by support vector machine (SVM). The robust 
estimator has an improved positioning accuracy and the classification rate of SVM classification can reach 91.5% in 
urban scenarios. An important issue is related to satellites with ultra‑high or low elevation angles and satellites near 
the building boundary that are very likely to be misclassified. By solving this problem, the SVM classification shows the 
potential of about 90% classification accuracy for various urban cases. With the help of these approaches, the shadow 
matching has a mean error of 10.27 m with 1.44 m in the cross‑street direction; these performances are suitable for 
urban positioning.

Keywords: GNSS, Shadow matching, NLOS and machine learning, Robust estimation
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Introduction
Positioning has become a part of our everyday life. People 
heavily rely on GNSS-enabled applications to navigate 
himself or herself to a destination. However, GNSS posi-
tioning is greatly affected by the notorious multipath and 
non-line-of-sight (NLOS) reception phenomena (Ji et al. 
2010; Tsakiri et  al. 1998). These effects are due to the 
signal blockage and reflection by and on the buildings. 
In other words, the more urbanized the city is, the more 

challenge on the GNSS positioning is. This is one of the 
current problem of smartphone service providers; conse-
quently, a solution for multipath and NLOS is needed.

To solve these problems, many technologies have been 
developed such as: pseudorange error modeling ( Viand-
ier et al. 2008), consistency checking (Hsuet et al 2017), 
robust estimation (Gaglione et al. 2017), inertial sensors 
(El-Sheimy and Youssef 2020) and more available satel-
lites (Yang et al. 2020). Beyond conventional approaches, 
one of the innovative solutions is related to the use of 3D 
building models. Since the rise of smart cities, the 3D city 
models become wid ely available, especially for highly 
urbanized cities, including Hong Kong, New York, Tokyo, 
and London. These models can be used to effectively 
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simulate the GNSS signal transmission in urban areas. 
The methods that used the 3D mapping database to facil-
itate the GNSS positioning are called 3D mapping aided 
(3DMA) GNSS. One of the most effective 3DMA GNSS 
method is the GNSS shadow matching (Groves 2011). 
The shadow matching technique compares the visible 
GNSS satellites, from the hypothesized locations on 3D 
map, with the measurements, classified by received sig-
nal strength. This approach improves the GNSS position-
ing in urban canyons, especially reducing the positioning 
error in the across-street direction. This improvement 
could be extremely meaningful for applications like car 
sharing. The smartphone users are sometimes fooled by 
incorrect GNSS positioning, causing unpleasant user 
experiences. Theoretically, the GNSS shadow matching 
provides a good solution if the following assumptions 
are met: the GNSS measurements are correctly classi-
fied; the initial position accuracy of the shadow matching 
algorithm is within 40 m (Groves et al. 2015). The paper 
aims to provide an algorithms able to validate these two 
assumptions.

The proposed LOS/NLOS classification for shadow 
matching, is tested on measurements provided by a 
smartphone GNSS receiver firstly. The classification is 
based on the signal strength of satellites, expressed by 
the signal to noise ratio (SNR) measurement. The satellite 
with high SNR value is more likely to be considered as 
the LOS satellite. However, surrounding buildings, with 
facades made of materials likes steel and glass, increase 
the reflected signal strength, making the classification 
based on SNR insufficient (Wang et al. 2015). After that, a 
robust classification, considering the SNR, pseudorange, 
and elevation angle of the received signals in a decision 
tree method, is raised. Comparing with the SNR classi-
fication, the robust classifier takes more satellite features 
into consideration and have a better classification rate 
in LOS satellite detection (Yozevitch et  al. 2016). Fur-
thermore, the robust classifier has been combined with 
the shadow matching over a particle filter (Yozevitch 
and Moshe 2015). The support vector machine (SVM) is 
also applied to the LOS/NLOS classification (Hsu 2017). 
From the paper, the classification is compared in single 
feature and multiple features, and the difference between 
delta pseudorange and pseudorange rate (pseudorange 
rate consistency) is proved to have a positive impact on 
the classification. In the paper, various machine learn-
ing methods are compared, including k-nearest neigh-
bors (KNN), neural network (NN), SVM and decision 
tree (TREE) (Xu et  al. 2018). Among these approaches, 
the SVM method using the features of commercial GNSS 
receiver has a good performance in different urban sce-
narios and decent generalization ability. In this paper, 
we extended the SVM classifier based on the features 

available in smartphone level GNSS chip. In addition, 
a robust estimator on single point positioning (SPP) is 
implemented for the initialization (Gaglione et al. 2017). 
The experiment results showed that the improved GNSS 
shadow matching with SVM classification could achieve 
10.27 m of mean error and 1.44 m of error in across street 
direction in the urban canyons of Hong Kong.

This paper is organized as follows. Section  2 gives an 
overview of the improved GNSS shadow matching based 
on the classifier and robust SPP. In Sect. 3, the proposed 
machine learning LOS/NLOS classifier based on several 
GNSS measurement features is introduced. Section  4 
provides a brief description of weighted robust estimator. 
Section 5 presents the results of the classification, differ-
ent SPP solutions, and the integrated shadow matching. 
Section 6 gives the conclusion and future work based on 
the findings of this study.

Shadow matching based on LOS/NLOS classifier 
and weighted robust estimator
The shadow matching (SDM) is integrated with a robust 
estimator and the SVM classification as shown in Fig. 1. 
The modules highlighted are the contribution of this 
paper, compared with the shadow matching algorithm 
proposed in Wang (2014). The main modules of innovat-
ing shadow matching are introduced as follows:

Initial approximate solution
The conventional initial position guesses of shadow 
matching are weighted least square solution, NLOS prob-
abilities based weighted least square solution (Adjrad 
and Groves 2017) and the previous solution of shadow 
matching. (Adjrad and Groves 2018) For this paper, the 
initial position guess is based on a weighted robust esti-
mator solution introduced in Sect. 4.

Particle sampling
The particle sampling is a method to scatter Gaussian 
distributed particles as the shadow matching position 
candidates. In detail, a search area, centered at the ini-
tial approximate solution firstly, is considered. All sam-
pled particles have the elevation angle of the surrounding 
building boundary at every azimuth angle. The benefits 
of this sampling include dropping the number of posi-
tion candidates and reducing the running time of algo-
rithm. The demonstration of particle sampling is shown 
in Fig. 2.

Observed satellite visibility
In urban areas, several signals from satellites are blocked 
by surrounding tall buildings. With the help of 3D build-
ing models, the satellite visibility of each particle is 
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predicted by comparing the elevation angles of satellites 
and building boundaries at the same azimuth angle.

Predicted satellite visibility
The conventional LOS/NLOS classifiers are simply based 
on SNR measurement and elevation angle of satellite 
using a decision tree. The essence of decision tree clas-
sifier is still a threshold based on the specific conditions. 
These attempts still face the issue of SNR unreliability and 
of its changing behavior according to the scenario. For 
these reasons, a multi-featured classification approach is 
necessary to supply SVM classification. The detail of the 
proposed SVM classifier will be given in Sect. 3.

Score scheme
After resolved for the observed and predicted satel-
lite visibility, a scoring scheme for candidate locations is 
used. If a satellite, expected to be unblocked by buildings, 
is classified as the LOS signal, the candidate will gain a 
score. Conversely, for satellite predicted as blocked, only 
by meeting the labeled condition of NLOS or not meas-
ured, the satellite would add a score for this candidate 
position as shown in Table 1.

Positioning
The last step to generate a positioning solution is employ-
ing scores of every candidate particle. The probability of 
ground truth position solution would be derived from 
the score of the candidate particle. For particle i, the pos-
sibility is calculated as following:

where smin and smax are the maximum and minimum 
scores of all particles. For the current positioning, a 
threshold of 85% is set to pick the candidate particles 
over possibility threshold. Afterward, for the final posi-
tion solution, the average of the picked candidate parti-
cles is computed as following:

where 
[

xi yi zi
]

 are the coordinates of the picked can-
didate particles in earth-centered, earth-fixed (ECEF) 
frame; n is the number of picked candidate particles.

LOS/NLOS classifier based on machine learning
This section provides a brief introduction to the princi-
ples of the SVM LOS/NLOS classifier. Moreover, the fea-
tures for LOS/NLOS classification are discussed.

(1)ρi =
si − smin

smax − smin
,

(2)Psm =

∑n
i=1

[

xi yi zi
]

n
,

Fig. 1 Flowchart of SDM with SVM classification and R‑WLSb

Fig. 2 Demonstration of particle sampling

Table 1 A score scheme for shadow matching

Score scheme Measured 
and Classified

Not 
measured

LOS NLOS \

Predicated Blocked 0 1 0

Unblocked 1 0 1
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The architecture of classifier
The architecture of SVM classifier contains two stages: 
offline and online, as shown in Fig.  3. For the offline 
stage, the raw GNSS measurements are used for 
extracting features of machine learning approach, and 
the features are labeled using the 3D building models, 
ground truth and satellite positions calculated by GNSS 
ephemeris. The elevation and azimuth angles of satel-
lites could be calculated by the satellite position from 
GNSS ephemeris and the ground truth position, then 
the elevation of satellites is compared with the eleva-
tion angle of building edges at the same azimuth angle. 
For the LOS satellites, the elevation is higher than the 
maximum elevation angle of the buildings at the same 
azimuth angle, and vice versa. Finally, an offline labeled 
dataset is created to train a linear SVM classifier. For a 
linear SVM classifier, the score of classification is calcu-
lated by:

whereÏ x is the machine learning feature vectors, and s, β, 
b donate the kernel scale, the vector of fitted linear coef-
ficients and bias from linear SVM classifier, respectively. 
The predicted LOS/NLOS label is calculated by:

For the online stage, the feature vector from the raw 
GNSS measurement is put into the SVM score formula 
to obtain the predicted satellite visibility.

Features of machine model
According to our preliminary result (Xu et  al. 2018), 
there are differences between LOS and NLOS signals 
existing in features as follows:

(3)Score(x) = (x/s)Tβ + b,

(4)Label =

{

LOS Score ≥ 0

NLOS Score < 0
,

Signal noise ratio (SNR)
The SNR is a conventional variable to predict satellite vis-
ibility, because the reflection and refraction of the NLOS 
signal transmission decrease the signal strength for most 
cases. The signal strength of each received signal could be 
obtained from the raw GNSS measurements in receiver 
independent exchange format (RINEX) data. To present 
the real SNR measurement, a dataset of about 20  min is 
collected in urban scenario, as shown in Fig. 4. It is evident 
that there are some SNR regions where the LOS and NLOS 
signals coexist at the same time, demonstrating that the 
simple SNR threshold classification might not work per-
fectly in urban environments.

Normalized pseudorange residual (NPR)
The pseudorange residual is also a useful feature related 
with satellite visibility (Hsu et al. 2017). The pseudorange 
residual is computed by the least square approach, which 
is a conventional approach to estimate user position. The 
least square approach is computed by:

 whereX is a vector with the estimated receiver position 
and clock bias, H is a matrix with unit LOS vectors point-
ing from the receiver to satellites. ρ denotes pseudorange 
measurements. After iterations, the pseudorange residual 
of each satellite is expressed as:

However, the estimated position in urban area always 
contains a large error, so the pseudorange residual could 
not indicate the difference between LOS and NLOS signals 
clearly. For that reason, the pseudorange residuals of each 
epoch are normalized as:

(5)X =

(

H
T
H

)−1

H
T
ρ,

(6)Pr = ρ−H · X,

(7)NPR =
Pri − Prmin

Prmax − Prmin
,

Fig. 3 Flowchart of the proposed LOS/NLOS SVM classifier

Fig. 4 Demonstration of SNR of LOS and NLOS in an urban test
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where Prmax and Prmin are maximum and minimum 
pseudorange residual of each epoch. A demonstration of 
normalized pseudorange residual is shown in Fig. 5. With 
an accurate position estimation, the normalized pseu-
dorange residual of LOS signal is closer to zero than that 
of NLOS signal, since the NLOS signal have additional 
propagation path in pseudorange.

Elevation angle (EA)
The elevation angle of satellite has relationship with the 
satellite visibility. The main reason is that the higher ele-
vation angle signal is less possible to be blocked by the 
surrounding building. The existing classification algo-
rithm also applied the elevation angle into LOS/NLOS 
classification (Yozevitch et al. 2016).

Pseudorange rate consistency (PRC)
The pseudorange rate is the changing rate of pseudorange 
measurement between two epochs and expressed as:

where ρi
t and ρi

t−1 is the pseudorange measurement of 
satellite i at epoch t and t-1. The pseudorange measure-
ment of raw data comes from the receiver code tracking 
loop. Meanwhile, the Doppler shift of signal is estimated 
from the receiver frequency tracking loop, and the pseu-
dorange rate could be related with Doppler shift by:

where �i is the negative of carrier wavelength and fd.i 
is Doppler shift measurement for satellite i . Compar-
ing with receiver code tracking loop, the multipath and 
reflection path have less impact on frequency tracking 
loop, which shows the consistency between the pseudor-
ange rate from pseudorange measurement and Doppler 
shift could reveal the influence from NLOS signal. The 
pseudorange measurement consistency is expressed by:

(8)�Pi
t = ρi

t − ρi
t−1,

(9)ρi
t =

(

−�i · fd.i
)

�t,

where P̂i
t and �Pi

t are the pseudorange rate from Dop-
pler shift and pseudorange measurement respectively. 
The pseudorange rate of LOS signal have a more stable 
and smaller absolute value than that of NLOS signal, as 
shown in Fig. 6.

After generated from the GNSS measurements, the 
four features are used in the proposed SVM classifier.

Weighted robust estimation
The most common mode in GNSS navigation is the SPP, 
where the used estimation technique is the LS (or WLS) 
method. LS optimization criterion is the minimization of 
the sum of the squared residuals; it is very popular due 
to its simplicity, being the LS estimation computable 
explicitly from the measurements as shown in Sect.  3. 
The main drawback of LS (and WLS) is its sensibility to 
anomalous measurements (in literature also called outli-
ers or blunders) (Rousseeuw and Leroy 1987). In general, 
two different strategies could be carried out to tackle the 
outlier issue:

• a diagnostic approach
• a robust approach.

The diagnostic approach consists of identifying and 
rejecting the outliers by checking the consistency of 
redundant measurements; in GNSS context, RAIM 
techniques follow this way (Brown 1993; Castaldo et  al. 
2014; Kuusniemi et  al. 2004). On the other hand, the 
robust approach is carried out by the robust estimators 
which are inherently resistant to outliers. Several classes 
of robust estimators exist, e.g. L-estimators, M-estima-
tors, R-estimators, differing each other for the optimiza-
tion criterion. The robust approach has been applied to 
GNSS in Gaglione et al. (2017), Knight and Wang (2009). 
In particular, in Gaglione et al. (2017) it has been shows 
the effectiveness of Huber M-estimator for processing 

(10)PRC = ρi
t −�Pi

t ,

Fig. 5 Demonstration of NPR of LOS and NLOS in an urban test

Fig. 6 Demonstration of NPR of LOS and NLOS in an urban test
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GNSS measurements in urban scenario and it has been 
demonstrated the importance of using a suitable weight-
ing scheme for improve the performance of the robust 
estimators. In this work, a similar approach is followed 
and Huber M-estimator, with weighting scheme based 
on signal-to-noise ratio and satellite elevation, is used 
to provide the initial solution to shadow matching algo-
rithm. The implemented technique is shortly indicated a 
weighted robust estimator.

In general, in M-estimators, the solution is obtained 
applying iteratively the WLS, with the weights depending 
on the residuals.

In Huber M-estimator, the i-th diagonal element of 
the weighting matrix at each iteration j, is obtained as 
follows:

 where (ri)j−1 is the residual of the i-th measurement at 
the j-th iteration, k is a constant set to 1.345, σ̂0 is the 
standard deviation of the residuals.

The initial weighting matrix is defined according to 
the following pseudorange variance model σ 2

PR , whose 
effectiveness has been demonstrated in Angrisano et  al. 
(2018) and Tay and Marais (2013):

where A is a parameter empirically defined, El is the 
satellite elevation in degrees, SNR is the signal-to-noise 
ratio of the carrier in dB, and the bandwidth of receiver 
is 1 Hz.

The initial i-th weight is obtained as (wi)0 = 1/
(

σ 2
PR

)

i
.

Experimental results and discussion
Experiment setup
The static data were collected at serval different locations 
in in Hung Hom, Hong Kong with a UBLOX NEO M8T 
receiver.

To test all the possible blockage geometries of the 
urban environment, the experimental locations are 
selected as shown in Fig. 7 and their sky plots with build-
ing boundaries are shown in Fig. 8. About 15–20 min of 
data were collected in each point.

After collected the raw data from above locations, fea-
tures for training approach are derived as Signal Noise 
Ratio (SNR), Normalized Pseudorange Residual (NPR), 
Elevation Angle (EA) and Pseudorange Rate Consistency 
(PRC). For the training stage, these features of all loca-
tions are sorted into a random ordering, labeled by the 
surrounding 3D building model and the ground truth, 

(11)(wi)j =







(wi)j−1,

�

�(ri)j−1

�

�

σ̂0
≤ k

(wi)j−1
k

�

�(ri)j−1/σ̂0
�

�

,

�

�(ri)j−1

�

�

σ̂0
> k

(12)σ 2
PR = A

10−
SNR
10

sin2 (El)
,

and dropped in to the linear SVM model to produce a 
machine learning model. Furthermore, the data of above 
locations is also used for testing the classification rate of 
the linear SVM model and the positioning performance 
of our improved shadow matching algorithm. Addition-
ally, the model of classification is based on the given 
training data, and different kind of GNSS receiver has its 
unique setting like bandwidth, antenna gain and satel-
lite constellation, which make features of the same signal 
variously. Therefore, the model of classification should be 
trained for each receiver.

Classification results
Considering the collected data as training dataset and 
testing dataset for SVM classifier, the classification rate 
of SVM classification and simple SNR classification are 
shown in Table 2. The simple SNR classification is express 
as follows:

From Table 2, it could be noted that the SVM classifica-
tion has improvements for urban cases. The SVM classifi-
cation rate of P2, P3, P4 and P8 has a better performance 
than the SNR classification. Moreover, a confusion statis-
tic between LOS and NLOS satellite is shown in Table 3.

From Table 3, most of SVM classification for LOS sat-
ellite is good in urban environment such as P1, P2, P3 
and P7. Meanwhile, the SVM classification of two-side 
blockage building geometry (P4 and P5) is not good 
for LOS classification, but still useful for NLOS clas-
sification. In such environment, there are many satel-
lites near to the building edges. For P6 test, the SVM 
classification failed totally in both of LOS and NLOS 

(13)Label =

{

LOS SNR ≥ 35 dB

NLOS SNR < 35 dB
,

Fig. 7 Locations of static experiment in a Hong Kong urban canyon 
(from Google Map)
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classification, and the SNR classification still maintain 
a classification rate with 81.2%. Thus, the SNR classi-
fier could be integrated with the SVM classification 
to provide a basic classification in the future. For the 
experiment at P7, it is a deep urban environment with 
a 95.1% LOS classification rate and 67.3% for NLOS 
satellites. The main reason is that the amount of LOS 
satellite is very limited while satellites’ elevation angles 
are very high. At the same time, there are some NLOS 
satellites with high elevation angle, which are likely 
to be misclassified as LOS satellites. By considering 
the SVM’s performance with respect to the elevation 
angle, the SVM model is always taking the high eleva-
tion angle satellite as LOS satellite and taking the low 
elevation angle satellite as NLOS, as shown in Figs.  9 
and 10. From the eight locations’ dataset, the effected 
range in elevation angle is nearly from 0 to 30 degrees 
in low elevation angle and from 60 to 90 degrees in high 

elevation angle. We call this case as elevation mask 
angle of SVM. The main reason of this misclassification 
is that the most of high elevation satellites from the real 
measurements are LOS satellite and used for training 
the SVM model, similarly with the NLOS satellite.

Another case that SVM classifier always failed is the 
transition of satellite visibility as shown in Fig. 11. How-
ever, the classification score of SVM model is too far to 
reach separating hyperplane and change the classifica-
tion result in a short time, as shown in Fig. 12. The LOS/
NLOS labels by 3D building model and its comparison 
with SVM model is shown in Fig. 13.

If the two cases (elevation mask angle and visibility 
transition) area excluded, the classification rate of SVM 
classifier can be improved greatly, which is shown in 
Table  4. The classification rates are nearly 90% for the 
most of cases, which presents these issues are very 
important to SVM classification.

Fig. 8 The sky plots with building boundaries of different location in the urban canyon. a One side of sky is blocked (P6). b Two sides of sky is 
blocked (P5). c Three sides of sky is blocked (P3). d Four sides of sky is blocked (P7)

Table 2 The SNR and SVM Classification rate of the experiment using U-BLOX receiver at the Hong Kong urban area

Location P1 P2 P3 P4 P5 P6 P7 P8

SNR 95.8% 83.0% 71.0% 56.5% 74.3% 81.2% 85.4% 71.7%

SVM 84.6% 91.5% 73.2% 63.9% 63.0% 45.4% 67.6% 85.0%

Table 3 Confusion statistic matrix of the experiment using U-BLOX receiver at the Hong Kong urban area

SVM-predicted visibility

Location P1 P2 P3 P4

Actual Visibility LOS NLOS LOS NLOS LOS NLOS LOS NLOS

LOS 98.0% 32.1% 84.8% 2.2% 75.1% 24.8% 54.8% 18.3%

NLOS 2.0% 67.9% 15.2% 97.8% 24.9% 75.2% 45.2% 81.7%

Location P5 P6 P7 P8

Actual Visibility LOS NLOS LOS NLOS LOS NLOS LOS NLOS

LOS 49.4% 23.1% 44.3% 47.2% 95.1% 32.7% 72.9% 14.6%

NLOS 50.6% 76.9% 55.7% 52.8% 4.9% 67.3% 27.1% 85.4%
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Weighted robust estimation results
The mean error of different positioning approaches, 
including position solution from the commer-
cial receiver National Marine Electronics Associa-
tion (NMEA) solutions, conventional weighted least 
square based on open source software goGPS 0.4.3 and 
the proposed weighted robust estimator (WRE) are 

Fig. 9 Skyplot of P6 with the satellite visibilities labelled from ground 
truth

Fig. 10 Skyplot of P6 with the satellite visibilities determined by SVM

Fig. 11 Demonstration of the satellite visibility transition

Fig. 12 Demonstration of SVM score of misclassified satellite

Fig. 13 Demonstration of visibility label of PRN.5 from ground truth 
and SVM classification result 
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compared in Table 5. The standard deviation of differ-
ent positioning approaches is also shown in Table 6.

From Tables 5 and 6, the weighted robust estimator has 
a great improvement in mean error over the conventional 
least square approach for all tests, especially in light 
urban scenarios (P1, P2). For the test of P1, WRE has an 
error of 3.03  m in mean and 1.96  m in standard devia-
tion, while the NMEA has a mean error of 3.48 m. Similar 
performance can be found in P6, where WRE provides 
a better performance than NMEA solution. Both loca-
tions have enough LOS satellites with 7 LOS satellites 
in P1 and P6. Moreover, WRE has a better performance 
in deep urban location (P7) with 19.5  m in mean error, 
where the NMEA solution has an error of 78.89 m. There 
are only two LOS satellites at P7, which makes the con-
ventional least square has an error of 41.1 m. In this case, 
the performance of WRE is related to the sky view visibil-
ity. The sky plots from ground truth locations at P1 and 
P7 are shown in Figs. 14 and 15, respectively.

Shadow matching results with the different 
initialization approaches
The searching area of the shadow matching is a 
40  m × 40  m square with the initial positioning solu-
tion as the center, and the observed satellite visibility is 
based on the SVM classification. The mean error and 
across street error of different positioning initialization of 
shadow matching is shown in Tables 7 and 8, and ‘WLS’, 
‘WRE’ and ‘GT’ means weighted least square solution, 

weighted robust estimation solution and the ground 
truth for the shadow matching initialization.

According to the shadow matching results, the robust 
result is close to the ground truth when the classification 
rate is high, and the initial solution is accurate. There-
fore, the initial position guess is essential for shadow 
matching. At P7, the initial position from NMEA is far 

Table 4 The classification rate of SVM classification and SVM classification without issues

Location P1 P2 P3 P4 P5 P6 P7 P8

SVM 84.6% 91.5% 73.2% 63.9% 63.0% 45.4% 67.6% 85.0%

SVM
w 87.5% 94.3% 92.5% 89.3% 87.2% 79.6% 68.3% 90.4%

Table 5 The mean error of different positioning approaches (m)

Location P1 P2 P3 P4 P5 P6 P7 P8

WLS 26.40 66.14 52.19 25.74 28.90 26.78 41.10 55.55

WRE 3.03 9.43 30.58 16.07 23.94 7.76 19.50 16.42

NMEA 3.48 4.27 20.23 11.57 11.34 8.71 78.89 12.40

Table 6 The standard deviation of different positioning approaches (m)

Location P1 P2 P3 P4 P5 P6 P7 P8

WLS 14.78 24.03 31.13 10.69 12.22 26.56 17.52 19.72

WRE 1.96 8.85 21.92 11.09 21.71 4.59 1.66 11.35

NMEA 1.15 3.03 12.82 3.94 2.00 3.52 29.12 10.60

Fig. 14 Sky plot from ground truth label at P1
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away from the ground truth, thereby it is impossible 
to get the usable results from shadow matching. At P6, 
the shadow matching error between ground truth and 
other approaches is similar, since there are similar build-
ing geometries around the initial guess. In the other 
words, the multi-modal issue at P6. Moreover, its SVM 
classification rate is around 45%, which gives the wrong 
score for the particles. In this case, it could reveal that 
the classification for shadow matching affects its results 
directly. Similarly, at P4 and P5, the shadow matching 
failed with low classification rate around 60%. In sum-
mary, a threshold of classification rate is necessary for the 

shadow matching to indicate the availability of shadow 
matching. From Table 8, although the mean error of the 
shadow matching performs not well enough, the error 
in the across street direction decreases with an accurate 
initial position, which is the unique advantage of shadow 
matching.

On the other hand, the shadow matching performance 
is relied on the signal classification rate. Therefore, the 
comparison between different initialization approaches 
cannot be evaluated when the shadow matching clas-
sification rate is low. For example, at P4, mean errors of 
initializations obtained using NMEA and robust estima-
tor are 16.07 m and 11.57 m, respectively. However, mean 
errors of shadow matching initialized by NMEA and 
robust estimator are 46.73  m and 47.01  m, respectively, 
with a classification rate of 63.9%. Therefore, it is difficult 
to evaluate the performance of NMEA and robust esti-
mator in this case. The shadow matching also applied to 
different initial positioning solutions with real satellite 
visibility. The mean error and across street error of dif-
ferent positioning initialization of shadow matching are 
shown in Tables 9 and 10.

From Tables 9 and 10, all initialization approaches have 
a prefect classification accuracy on satellite visibility, thus 
WRE and NMEA solution have the comparative error in 
terms of mean error and the error in the across-street 
direction at P1 and P2. However, the standard deviation 
error of SPP from the robust solution and NMEA are 
8.85 m and 3.03 m, respectively. It is because the search 
area of these two approaches contains the similar high 
possibility particles of shadow matching, which is illus-
trated in Figs. 16 and 17. Therefore, it could be stated that 
when the initial position error is within a range, shadow 
matching shows similar performances.

Fig. 15 Sky plot from ground truth label at P7

Table 7 The mean error of SVM classification based shadow matching initialized by different approaches (m)

Location P1 P2 P3 P4 P5 P6 P7 P8

Initial WLS 49.38 83.48 53.45 40.79 40.50 20.64 41.55 41.31

guess WRE 10.72 10.27 45.71 46.73 45.80 21.75 29.19 28.54

of NMEA 11.50 10.00 28.03 47.01 37.94 20.70 66.87 17.31

SDM GT 9.04 9.21 17.63 34.88 35.87 21.48 6.46 19.41

Table 8 The across error of SVM classification based shadow matching initialized by different approaches (m)

Location P1 P2 P3 P4 P5 P6 P7 P8

Initial WLS 14.18 12.57 26.73 7.42 10.58 6.24 13.41 16.95

guess WRE 3.97 1.44 4.27 9.93 16.92 2.09 2.45 8.13

of NMEA 4.47 1.91 6.12 6.73 4.43 2.18 10.85 6.09

SDM GT 3.38 1.77 2.08 7.30 3.09 1.38 3.86 2.56



Page 11 of 12Xu et al. Satell Navig            (2020) 1:15  

Conclusion and future work
In this paper, the shadow matching is integrated with 
the proposed SVM LOS/NLOS classifier and a robust 
SPP. For the SVM classification, it is discussed the satel-
lite visibility-related features as SNR, normalized pseu-
dorange residual, elevation angle and pseudorange rate 
consistency. Moreover, the major problems of SVM 
classification are identified as elevation mask angle and 
visibility transition. For the integrated shadow match-
ing, the robust SPP can provide an improved initial 
position compared to NMEA solution. Experimen-
tal results show that the SVM classifier has achieved a 
classification rate of 91.5%. However, there are misclas-
sifications in some urban scenarios, with a classifica-
tion rate of 45.4%. By excluding problematic satellites, 
the SVM classification shows the potential to supply a 
stable classification rate around 90% at different urban 

scenarios. The robust SPP also provides a solution of 
3.03  m in mean error in urban area. Additionally, the 
improved shadow matching provides a 10.27  m in 
mean error and 1.44  m error in cross street direction 
with the SVM classifier. With the prefect classification, 
the shadow matching with robust SPP provides 1–3 m 
accuracy in the cross-street direction, which could be 
useful, for instance, in e-hailing app. In the future, the 
SVM classifier could be integrated with other LOS/
NLOS classifiers to provide the confidence coefficient 
of the current classified satellite visibility. Moreover, 
the confidence coefficient of classified result could be 
applied into shadow matching to mitigate the impact 
from the misclassification. The weighted robust estima-
tor can be improved with the satellite visibility from the 
SVM classification.

Table 9 The mean error of real satellite visibility based shadow matching initialized by different approaches (m)

Location P1 P2 P3 P4 P5 P6 P7 P8

Initial WLS 52.08 81.99 52.65 41.92 44.90 20.96 42.14 42.57

guess WRE 11.03 8.16 28.76 49.58 34.84 21.25 25.96 25.62

of NMEA 11.01 8.12 23.61 39.79 28.02 20.31 65.47 14.22

SDM GT 11.35 7.95 17.53 24.12 23.08 20.99 23.70 18.11

Table 10 The across error of real satellite visibility based shadow matching initialized by different approaches (m)

Location P1 P2 P3 P4 P5 P6 P7 P8

Initial WLS 15.90 12.83 26.21 8.26 10.66 6.41 13.76 16.42

guess WRE 3.57 1.87 0.45 12.31 20.10 2.29 2.15 13.31

of NMEA 2.97 1.99 3.22 8.97 3.13 2.64 10.91 4.65

SDM GT 3.60 1.75 2.36 7.13 2.39 1.93 2.76 5.50

Fig. 16 Score and position solution of the shadow matching from 
SDM‑NMEA initialization at P2 Fig. 17 Score and position solution of the shadow matching from 

SDM‑WRE initialization at P2
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